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ABSTRACT

We present a parametric statistical post-processing method which trans-

forms raw (and frequently biased) ensemble forecasts from the Global En-

semble Forecast System (GEFS) into reliable predictive probability distribu-

tions for precipitation accumulations. Exploratory analysis based on 12 years

of reforecast data and 1/8-degree climatology-calibrated precipitation analy-

ses shows that censored, shifted gamma distributions can well approximate

the conditional distribution of observed precipitation accumulations given the

ensemble forecasts. A nonhomogeneous regression model is set up to link

the parameters of this distribution to ensemble statistics which summarize the

mean and spread of predicted precipitation amounts within a certain neigh-

borhood of the location of interest, and in addition the predicted mean of pre-

cipitable water. Regression parameters are fitted to training data through min-

imization of the continuous ranked probability score. The proposed method

is demonstrated with precipitation reforecasts over the conterminous United

States using common metrics such as Brier skill scores and reliability dia-

grams.
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1. Introduction28

Ensemble predictions are now routinely generated at operational weather prediction centers29

worldwide (Molteni et al. 1996; Toth and Kalnay 1993, 1997; Houtekamer and Derome 1995;30

Charron et al. 2010). Despite many improvements to them over the last ∼2 decades, precipitation31

forecasts from the ensembles are still typically unreliable, be it from insufficient model resolution,32

less-than-optimal initial conditions, sub-optimal treatment of model uncertainty, and/or sampling33

error. For this reason, statistical post-processing of the output of an ensemble prediction system34

is commonly an integral part of the forecast process, since it can improve the reliability and skill35

of probabilistic guidance (e.g. Wilks and Hamill 2007; Hamill et al. 2008, and references therein).36

By comparing past forecasts with their verifying observations, systematic biases and inadequate37

representation of forecast uncertainty can be identified, and the current forecast can be adjusted38

such as to minimize these systematic errors. When the forecasts are provided on a grid that is too39

coarse to resolve small-scale effects that affect the weather variable under consideration, many40

post-processing methods also implicitly perform a statistical downscaling.41

The statistical post-processing of precipitation accumulations is far more challenging than the42

post-processing of weather variables like surface temperature or wind speed for several reasons:43

1. Their mixed discrete/continuous nature (positive probability of being exactly zero, contin-44

uous value range for positive precipitation amounts) makes it difficult to find an adequate45

parametric distribution model.46

2. Forecast uncertainty typically increases with the magnitude of expected precipitation47

amounts; this must be taken into account when setting up a model for the conditional dis-48

tribution of observed precipitation amounts given the ensemble forecasts.49
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3. High precipitation amounts occur very infrequently; a customized treatment of these cases50

may therefore require a vast amount of training data.51

The advantages and disadvantages of the different post-processing approaches proposed in the lit-52

erature are typically related to those three challenges. Non-parametric approaches like the analog53

method (Hamill and Whitaker 2006; Hamill et al. 2015) completely avoid the first two issues,54

but may be disproportionately affected by the third one since their treatment of high precipitation55

amounts neglects the information with training samples with lower precipitation amounts. Para-56

metric methods, on the other hand, can extrapolate the relations found between observations and57

forecasts of low and moderate magnitudes to higher magnitudes. In doing so, they may reduce58

the demand for training data, but the quality of the corresponding predictions strongly depends59

on the adequacy of the parametric assumptions that have to be made. Examples of paramet-60

ric approaches that have been developed for quantitative precipitation forecasts include Bayesian61

Model Averaging (BMA, Sloughter et al. 2007), extended logistic regression (ExLR, Wilks 2009;62

Ben Bouallègue 2013; Messner and Mayr 2014), and ensemble model output statistics (EMOS,63

Scheuerer 2014). All of them make somewhat ad-hoc assumptions about the parametric form64

of the predictive distributions: Sloughter’s BMA method models precipitation occurrence/non-65

occurrence separately and assumes gamma distributions for positive precipitation amounts; ExLR66

implies the assumption of censored logistic distributions; Scheuerer’s EMOS method assumes67

censored generalized extreme value distributions. To deal with the issue of heteroscedasticity68

mentioned above, BMA and ExLR commonly apply power-transformations to both forecasts and69

observations, with powers chosen such as to make the forecast error terms more homoscedastic.70

Scheuerer’s EMOS method utilizes two different ensemble statistics that serve as as predictors for71

the scale parameter of the censored GEV distributions.72
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In this paper we will leverage NOAA’s second-generation GEFS reforecast data set (Hamill et al.73

2013) to systematically develop a parametric model for the conditional distribution of observed74

precipitation amounts given the ensemble forecasts. This will eventually lead to an approach sim-75

ilar to the one proposed by Scheuerer (2014), but based on censored, shifted gamma distributions76

(CSGD), and a more sophisticated heteroscedastic regression model that accounts for some further77

peculiarities of precipitation. In Section 2 we briefly describe the forecast and observation data78

used in this study, and we introduce our CSGD model in Section 3. Section 4 describes the actual79

post-processing approach which proceeds in three steps: first, a CSGD model for the climatolog-80

ical distribution of the observations is fitted; second the ensemble forecasts are adjusted such as81

to match this observation climatology and are condensed into three ensemble statistics. Finally, a82

nonhomogeneous regression model is set up which links these statistics to the CSGD parameters,83

and results in a conditional distribution model for the observations given the ensemble forecasts.84

This model is relatively complex, but a comparison with non-parametrically estimated conditional85

distributions of observed precipitation amounts shows that a certain degree of flexibility (and thus86

complexity) is necessary to address the peculiarities of precipitation. The benefit of developing87

a sophisticated parametric approach will become clear in Section 5, where probabilistic forecasts88

generated by our method are verified and compared against those obtained with a state-of-the-art89

analog approach. The latter is even more flexible and easier to implement, but in situations where90

training data is sparse (e.g. rare events) the predictive performance of our method is favorable.91

The issue of limited training sample size is further discussed in Section 6, and plans for future92

investigations and development are pointed out.93
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2. Data94

The post-processing method developed here are applied to 12-hourly accumulated precipitation95

forecasts during the period from January 2002 to December 2013 for lead times up to +6 days. All96

of the forecast data were obtained from the second-generation GEFS reforecast data set; the same97

data was used in a recent paper by Hamill et al. (2015) which discusses variants of the analog98

method for statistical post-processing of ensemble precipitation forecasts. For precipitation, in-99

dividual forecasts by the 11-member GEFS reforecast ensemble were retrieved, and forecast data100

was extracted on GEFS’s native Gaussian grid at∼1/2-degree resolution in an area surrounding the101

contiguous U.S. Total-column ensemble-mean precipitable water is used as an additional predictor102

in our regression model, and the corresponding forecasts were interpolated to the same grid before103

further processing. Again as in Hamill et al. (2015), post-processing and verification is performed104

against precipitation analyses from the climatology-calibrated precipitation analysis (CCPA) data105

set of Hou et al. (2014), which were obtained on a ∼1/8-degree grid inside the contiguous U.S.106

The downscaling from the∼1/2-degree to the∼1/8-degree resolution will implicitly be part of the107

post-processing procedure.108

3. The censored, shifted gamma distribution109

To set up a parametric post-processing method, a suitable class of probability distributions must110

be identified. As precipitation occurrence/non-occurrence and amount are modeled jointly, a con-111

venient way to do so is using a continuous distribution that permits negative values, and left-112

censoring it at zero, i.e. replacing all negative values by zero. The censoring turns the probability113

for negative values of the uncensored distribution into a probability of observing a value equal to114

zero, thus ensuring requirement 1 from above.115
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Exploratory data analysis reveals another challenging requirement for conditional distributions116

of precipitation accumulations: when the predictor variable (e.g. the ensemble-mean precipitation117

forecast) is small, then a strongly right-skewed distribution is called for, but the required skewness118

becomes smaller and smaller as the predictor variable’s magnitude increases. To some extent,119

this behavior can be addressed by using gamma distributions, which are characterized by a shape120

parameter k and a scale parameter θ . Those two parameters are related to the mean µ and the121

standard deviation σ of the gamma distribution via122

k =
µ2

σ2 , θ =
σ2

µ
(1)

(Wilks 2011, Sec. 4.4.3). Since the predictive standard deviation increases more slowly than the123

predictive mean as the predictor variables increase, the shape parameter k decreases, and with it124

the skewness of the distribution.125

A disadvantage of the gamma distribution is that its value range is non-negative. To make the126

above censoring idea work, we therefore introduce an additional parameter δ > 0, which shifts the127

cumulative distribution function (CDF) of the gamma distribution somewhat to the left. That is, if128

Fk denotes the CDF of a gamma distribution with unit scale and shape parameter k, then the CDF129

F̃k,θ ,δ of our censored, shifted gamma distribution (CSGD) model is defined by130

F̃k,θ ,δ (y) =


Fk
(y−δ

θ

)
for y≥ 0

0 for y < 0

(2)

Using the relations in (1), this distribution can also be parametrized by µ,σ , and δ : µ reflects the131

expected magnitude of precipitation; σ parametrizes prediction uncertainty; δ reduces the magni-132

tude of precipitation somewhat and controls the probability of zero precipitation. An illustration133

of the CSGD is given in Fig. 1.134
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4. Post-processing method135

Having selected a family of probability distributions, we need to set up a model that links the136

three parameters of this distribution to the ensemble forecasts. This is done in three steps. First,137

we fit a CSGD model as in eq. (2) to the observed precipitation accumulations at each grid point138

(separately for each month) to describe the observation climatology. In the second step, quantile139

mapping is performed to adjust the ensemble precipitation forecasts such as to match this obser-140

vation climatology. The adjusted forecasts are then reduced to two statistics that measure mean141

and spread of predicted precipitation accumulations. A further statistic is calculated that mea-142

sures the mean precipitable water. Finally, a heteroscedastic regression model is set up that links143

these statistics to the CSGD parameters, and thus yields, for given ensemble forecasts, a predictive144

distribution for the observed precipitation accumulations.145

a. Unconditional precipitation accumulations146

Although our main interest is in modeling the conditional distribution of observed precipitation147

accumulations given the ensemble forecasts, we first consider their unconditional (i.e. climato-148

logical) distributions. Studying those is much easier and yet quite instructive, as the conditional149

distributions should converge towards the unconditional distribution as forecast skill decreases.150

Moreover, they will allow us to parameterize the conditional distributions such as to make them151

more comparable across grid points with different climatologies.152

To fit the parametric CDF F̃µ,σ ,δ to the empirical CDF F̂n of the observations y1, . . . ,yn at this153

grid point, we minimize the integrated quadratic distance154

dIQ
(
F̃µ,σ ,δ , F̂

)
=
∫

∞

0

(
F̃µ,σ ,δ (t)− F̂n(t)

)2dt (3)
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in µ,σ , and δ . According to Thorarinsdottir et al. (2013), this is equivalent to minimizing the155

mean continuous ranked probability score (CRPS)156

1
n

n

∑
i=1

crps
(
F̃µ,σ ,δ ,yi

)
(4)

where157

crps(F,y) =
∫

∞

−∞

(
F(t)−H(t− y)

)2dt, (5)

and H(·) is the Heaviside step function, i.e. it is equal to 1 if t ≥ 0 and zero otherwise. After158

re-parameterizing, the integral on the right hand side can be expressed in closed form as159

crps
(
F̃k,θ ,δ ,y

)
= θ ỹ

(
2Fk(ỹ)−1

)
− θ c̃Fk(c̃)2

+ θk
(
1+2Fk(c̃)Fk+1(c̃)−Fk(c̃)2−2Fk+1(ỹ)

)
− θk

π
B
(1

2 ,k+
1
2

)(
1−F2k(2c̃)

)
where c̃ := −δ

θ
, ỹ := y−δ

θ
and B(·, ·) is the beta function (a derivation of this formula is given in160

the online appendix). The availability of a closed form expression makes model fitting through161

numerical CRPS minimization computationally efficient. When performing this minimization, the162

constraint δ ≥−µ is imposed in addition to the constraints µ,σ > 0 and δ ≤ 0 that are required for163

the distribution model to be well-defined. The reason for this will become more clear later in this164

section, when we set up the regression model for the conditional distribution of the observation165

given the forecasts.166

For solving the constrained optimization problems numerically, we use the Fortran 77 imple-167

mentation of the Linearly Constrained Optimization Algorithm (LINCOA) by Michael J. D. Pow-168

ell (details of this algorithm have not been published yet, but the usual way of choosing a new169

vector of variables is described in Powell 2014). A starting value for the optimization is obtained170

through the following rationale: if we had σ = µ , the underlying gamma distribution would have171
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a shape parameter k = 1, which corresponds to the special case of an exponential distribution. For172

this distribution, the mean over all non-zero precipitation amounts is an estimate of µ (and σ ),173

for any probability of precipitation πpop, and δ can subsequently be estimated as δ = µ log(πpop).174

For the 12h-accumulations considered here, the best-fitting k is typically smaller than 1, with µ175

being overestimated by the assumption of an exponential distribution. Moreover, the first guess176

estimates proposed above might violate the constraint δ ≥ −µ . We therefore improve our first177

guess by fixing σ , gradually decreasing µ , and recalculating δ = −(µ/k) ·F−1
k (1− πpop) until178

δ >−µ/2. The resulting values of µ,σ , and δ are then used as starting values for the numerical179

minimization of (4). If πpop < 0.02, we expect the number of days with non-zero precipitation180

to be too small to warrant stable estimates, and we therefore take the starting values as the final181

estimates. For extremely dry grid points with πpop < 0.005, even the simple preliminary estimates182

might be unreliable, and we use ad-hoc values µ = 0.0005,σ = 0.0182,δ = −0.00049 to set up183

a parametric distribution model for the analyzed climatology. Figs. 2 and 3 show examples of184

fitted CSGDs at a very wet location (West Palm Beach, FL) and a very dry location (Phoenix,185

AZ), respectively. The empirical and the fitted, parametric CDFs are virtually indistinguishable.186

The approximate character of the parametric distribution becomes more obvious when we plot its187

quantiles against the sorted observations. In those Q-Q plots we observe quite strong departures188

from the diagonal, especially in the upper tail. However, this is also where we expect significant189

sampling variability. In order to understand to what extent the departures might just be random,190

we add pointwise 95% Monte Carlo intervals by simulating 10000 samples of the same size as191

the original observations according to the fitted distribution model, sorting them, and reporting192

the 2.5% and 97.5% quantile of the first elements, second elements, and so forth. The black dots193

in the Q-Q plots in Fig. 2 and 3 (and in all other examples that we studied) are mostly inside the194
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95% Monte Carlo intervals, suggesting that the distribution family proposed here is adequate for195

modeling unconditional distributions of precipitation accumulations.196

b. Quantile mapping and ensemble statistics197

As a second step in our post-processing scheme, we attempt to correct systematic errors in198

ensemble forecast climatology. For example, the underlying numerical weather prediction may199

produce too many days with light precipitation and underforecast heavy precipitation events. Al-200

ternatively, these errors can arise due to coarser spatial resolution of the forecast grid compared to201

the grid on which analyzed precipitation is available. Let s be a location associated with some anal-202

ysis grid point. Prediction errors of the ensemble forecasts may result from inaccurately predicted203

magnitudes of a precipitation event as described above, but may also be caused by displacement204

errors. Following Scheuerer (2014), we therefore consider ensemble forecasts at all forecast grid205

points within a certain neighborhood N(s) of s as potential predictors for the analyzed precipitation206

amount at s. Forecast fx j of ensemble member j at forecast grid point x is thus used multiple times207

to calculate ensemble- and spatial means and spreads for all analysis grid point neighborhoods208

N(s1),N(s2), . . . containing x. Each time, the climatological adjustment is made with respect to209

the respective analysis grid point s1,s2, . . . as illustrated in Fig. 4. To match the forecast clima-210

tology with the observation climatology, quantile mapping is performed: for each forecast we211

determine to which quantile of the forecast climatology it corresponds, and then map it to the212

corresponding quantile of the observation climatology. Formally, denote by Ff cst,x the CDF of the213

forecast climatology at x and by F−1
obs,s the quantile function of the observation climatology at s.214

Then the adjusted forecast f̃x j of ensemble member j at x is given by215

f̃x j :=


0 if fx j = 0

F−1
obs,s

(
Ff cst,x( fx j)

)
if fx j > 0

(6)
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The CDF Ff cst,x and the quantile function F−1
obs,s must be estimated from suitable subsets (to ac-216

count for seasonal differences) of the training data. If the ensemble members are exchangeable217

as it is with the GEFS data used here, we can pool the training data over all members and ap-218

proximate Ff cst,x by the empirical CDF of all training forecasts at x. The quantile function F−1
obs,s219

can either be approximated by interpolating the empirical quantiles of the training observations at220

s. Alternatively, one can invert the CDF of the observation climatology fitted in the first step as221

described above. For very high quantiles, those two choices can differ noticeably, with the em-222

pirical quantiles being subject to substantial sampling variability and the model-based quantiles223

being subject to possible biases due to the parametric assumption on the form of the distributions224

(see Figs. 2 and 3). We consider those approximation biases the lesser of two evils and prefer the225

model-based quantiles, but as a safeguard against unwarranted corrections of high forecast values,226

f̃x j is capped at the level 1.3 ·F−1
f cst,x(0.999).227

To use these adjusted ensemble forecasts within a regression framework, they need to be con-228

densed into statistics that summarize the most important information. While we think that all229

forecast grid points in N(s) - which we take as a neighborhood around s with radius r = 1 degree230

- should be considered, we still expect forecasts at grid points closer to s to be more informative231

about the weather at s. Following Scheuerer (2014), we therefore weigh the forecast grid points232

according to their distance to s and let233

wsx ∼max

{
1−
(

dist(x,s)
r

)2

,0

}

with a constant of proportionality chosen such that the weights sum up to one (see Fig. 4 for an234

illustration of this weighting scheme). Assuming that we have adjusted precipitation forecasts235

f̃x1, . . . , f̃xm and forecasts χx1, . . . ,χxm of precipitable water, we consider the following ensemble236
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statistics:237

f s :=
1
m

m

∑
j=1

∑
x∈N(s)

wsx f̃x j (7)

χs :=
1
m

m

∑
k=1

∑
x∈N(s)

wsx χxk (8)

MD f ,s :=
1

m2

m

∑
j, j′=1

∑
x,x′∈N(s)

wsxwsx′ | f̃x j− f̃x′ j′| (9)

The first two are the weighted means of predicted adjusted precipitation accumulations and pre-238

cipitable water over all ensemble members and all forecast grid points in N(s). The third statistic239

measures the dispersion of the predicted precipitation accumulations both between ensemble mem-240

bers and between grid points in N(s). Unlike Scheuerer (2014), we do not use separate measures241

of dispersion for those two sources of variability in order to keep the number of parameters in our242

heteroscedastic regression model (defined below) as small as possible. We finally note that the243

adjustment of forecasts in the neighborhood of s to the analysis climatology at s via quantile map-244

ping achieves two goals: first an implicit downscaling to a finer grid, and second the retention (or245

even enhancement) of orographically related features in the raw ensemble forecasts when averag-246

ing over N(s). The latter is illustrated in Fig. 3 of Scheuerer (2014) where a simpler, multiplicative247

adjustment is used for that purpose.248

c. Regression equations249

The final step is now to set up and fit a regression model for the conditional distribution of250

observed precipitation accumulations given the forecasts. To this end, the ensemble statistics for251

location s defined above must be linked to the parameters µs,σs, and δs of our CSGD model in252

eqs. (1) and (2). Denote by µcl,s,σcl,s and δcl,s the parameters of the climatological CSGD at s.253

We model the conditional CSGDs as deviations from the climatological CSGD via the following254
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equations255

µs =
µcl,s

α1,s
· log

(
1+α1,s

[
α2,s ·

(
exp(1)−1

)
+α3,s ·

f s

f cl,s
+α4,s ·

χs
χcl,s

])
(10)

σs = α5,s ·σcl,s ·
√

µs

µcl,s
+α6,s ·MD f ,s (11)

δs = δcl,s ·
(

α7,s +α8,s ·
µs

µcl,s

)
(12)

where f cl,s and χcl,s denote the climatological means of f s and χs, respectively, calculated as256

averages of these quantities over the current training sample.257

The form of the regression equations (10)-(12), which depend on the fitted parameters258

α1,s, . . . ,α8,s, require some explanation. Consider first a situation with very good predictability. In259

this case, we often have 0 < α1,s� 1, which implies log(1+α1,sz)≈ α1,sz, and reduces eq. (10) to260

a linear regression on the two multiplicatively normalized predictors f s and χs. Eq. (11) accounts261

for the heteroscedasticity in the uncertainty about precipitation accumulations in two different262

ways. The first term increases σs proportionally to the square root of µs, which accounts for the263

fact that forecast uncertainty increases with the magnitude of expected precipitation amounts. The264

second term is proportional to MD f ,s and thus accounts for flow-dependent uncertainty. Eq. (12)265

permits an increased shift with increasing µs. This is useful to address one shortcoming of the266

CSGD when it is used as a model for conditional distributions of the observed given the forecasts:267

the CSGD yields very good fits for low to moderate levels of predicted precipitation, but for ele-268

vated levels its left tail can become too light. In that situation, increasing δs proportionally to µs269

permits a certain degree of re-adjustment of the lower predictive quantiles as can be seen by com-270

paring the probability density functions in Fig. 5. Another peculiarity of conditional distributions271

for precipitation is that a linear increase of µs with f s does not always seem adequate. Especially272

in situations with reduced predictability (longer lead times, summer season), ensemble forecasts273

of high precipitation amounts are often unreliable and should be decreased proportionately more274
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compared to forecasts of intermediate levels. This is the rationale behind the logarithm in eq. (10).275

Increasing the parameter α1,s reduces the growth of µs with increasing predictors and thus ac-276

counts for the phenomenon just described. Fig. 5 illustrates the evolution of the predictive CSGD277

density with increasing mean precipitation f s in a simplified setting where α4,s and α6,s have been278

set to zero. It shows how both uncertainty and shift parameter increase with increasing f s; at279

the same time the skewness of the underlying gamma distribution becomes smaller and smaller.280

Choosing α1,s = 0.05 results in a moderate departure from a linear relation between f s and µs.281

Is the CSGD adequate for modeling conditional distributions of precipitation accumulations,282

and are the above regression equations for its parameters µ,σ , and δ adequate for describing283

the evolution of these parameters with increasing ensemble mean? To answer this we compare284

quantiles derived from predictive CSGDs with empirical conditional quantiles obtained without285

any parametric assumption. For this purpose, however, even the 12 years worth of reforecast data286

are not enough if only data from a single grid point are considered. We focus on the analysis287

grid point corresponding to the city of Atlanta, GA, and we increase the corresponding dataset288

by selecting 200 additional grid points within a radius of about 700 km around Atlanta that have289

a similar climatology and are at least 40 km apart from each other. For each season, we then290

have about 91×12×201 pairs of observations and quantile adjusted forecasts. We study again the291

simplified regression model with α4,s = α6,s = 0, i.e. with f s as the only predictor. The conditional292

quantiles of the observation given f s = x can then be approximated by considering all forecast-293

observation pairs for which f s falls within a certain window (x−ε,x+ε) around the precipitation294

amount x, and computing the quantiles of the corresponding observations. We let ε increase with295

x to account for the fact that the number of pairs with f s ≈ x decreases rapidly as x increases.296

For x =5 mm and x =15 mm our choice of ε is illustrated in Fig. 6. The crosses in each plot297

correspond to the empirical, conditional deciles (i.e. quantiles for the probabilities 0.1, · · · ,0.9)298
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for each season and forecast lead times +12 to +24 h and +108 to +120 h. The solid lines are the299

quantiles obtained with our parametric regression model, fitted to the same training data. This is300

done again by CRPS minimization using the LINCOA algorithm by Michael J. D. Powell. Clearly,301

not every model-based quantile approximates the respective empirical quantile perfectly, and very302

irregular behavior cannot be captured. Yet one can see that the increase of predictive uncertainty303

with increasing f s is captured quite well; further the non-linear relation between f s and µs, which304

takes different forms depending on the skill of the ensemble forecasts, is accounted for by our305

regression model. It is worth noting that our method for getting empirical estimates of conditional306

quantiles is quite similar to what is being done by analog approaches. Those techniques are much307

more flexible and avoid the approximation errors entailed by parametric methods. On the other308

hand, several of the plots in Fig. 6 also suggest that the empirical quantiles for large values of309

f s are subject to quite substantial sampling error, even in the situation considered here where we310

choose the “analogs” from a training data set of size 91×12×201.311

Finally, consider how the regression model (eqs. (10)-(12)) for the predictive CSGDs approaches312

the parameters for the climatological CSGD in the limit where the raw ensemble forecasts have no313

skill. As the lead time increases, one can expect that the three predictors f s,χs and MD f ,s become314

less and less informative about the true weather, and so the corresponding regression parameters315

α3,s,α4,s, and α6,s tend to zero. We already mentioned that α1,s typically increases with decreasing316

skill of the ensemble, and we choose α1,s ≤ 1 as an ad-hoc upper bound. The decrease of α3,s and317

α4,s goes along with an increase of the intercept parameter α2,s, and for α2,s = 1, we end up318

with µs = µcl,s. Decreasing forecast skill also entails increasing prediction uncertainty, and we319

retrieve the climatological value σs = σcl,s as α5,s tends to 1. For α7,s and α8,s, there is no obvious320

tendency, and as µs approaches µcl,s, they also become less and less identifiable. As long as their321

sum tends to 1, however, δs approaches δcl,s, and the climatological CSGD results as a limiting322
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case. Including µcl,s,σcl,s and δcl,s in our parametrization therefore helps reducing the dependence323

of the regression parameters α1,s, . . . ,α8,s on the climatology at location s and thus renders them324

more comparable across different gridpoints.325

Modeling the conditional distributions as deviations from the climatological distributions re-326

quires some constraints of the latter. We found that this deviation concept does not work well at327

very dry locations if the shift parameter δcl,s of the climatological CSGD is large compared to328

µcl,s. In this case, positive precipitation accumulations correspond to the tail end of the under-329

lying gamma distribution, and deforming this distribution into a CSGD with a moderate to high330

probability of precipitation is rather unnatural. By introducing the constraint δcl,s ≥−µcl,s on the331

climatology parameters in subsection a), we enforce a very small shape parameter k. The mass332

of the underlying gamma distribution is then concentrated near zero, and a very small shift is suf-333

ficient to obtain a high probability of values less than zero. Fitting a climatological CDF to the334

analysis data under this constraint can result in a slightly sub-optimal fit to the empirical, clima-335

tological CDF near zero, but this degradation is offset by the fact that the fitted CSGD permits a336

natural deformation into the predictive CSGD for any value of the predictors.337

5. Comparison against the analog method338

We apply our CSGD regression method to the full data set described in Section 2. Now, every339

grid point of the CCPA grid (within the CONUS) is processed separately. Forecasts are cross-340

validated; for example, 2002 forecasts are trained using 2003-2013 data. In order to account for341

seasonal differences, a separate set of (both climatological and regression) parameters is fitted for342

each month; training data is composed of all forecasts and observations from ±45 days around343

the 15th of the month under consideration and all years except the one for which forecasts are344

sought. This results in a training sample size of 91×11 at each grid point. Compared to the345
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amount of training data that is typically used for weather variables like wind speed or temperature,346

this training sample size seems fairly large. At very dry locations, however, the majority of both347

forecasts and observations are zero, and thus carry only limited information that can be leveraged348

for model fitting. For the observation climatology parameters, the method for proceeding in these349

dry cases has already been described in Section 4. For the regression parameters, we increase the350

training data set of any grid point where the climatological probability of precipitation is less than351

0.05 by considering also the data at adjacent grid points in east-west and north-south direction.352

For grid points with a climatological probability of precipitation of less than 0.02, we additionally353

add the training data from diagonal neighbors. Parameters are estimated via CRPS minimization,354

subject to the following bounds:355

0.01≤ α1,s ≤ 1 , 0≤ α2,s ≤ 1,

0≤ α3,s ≤ 2 , 0≤ α4,s ≤ 2,

1.2≤ α5,s ≤ 1 , 0≤ α6,s ≤ 1.5,

0≤ α7,s ≤ 1 , 0≤ α8,s ≤ 1,

which are partly ad hoc and partly based on the discussion at the end of the previous section.356

The predictive performance of the approach presented here is compared to a variant of the “rank357

analog” approach by Hamill and Whitaker (2006), fully described in Section 2b of Hamill et al.358

(2015).359

a. Brier skill scores360

As a measure of predictive performance relative to climatological forecasts, we first consider361

Brier skill scores computed in the conventional way (Wilks 2011, eqs. 7.34 and 7.35). Scores362
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for the three thresholds 1, 10, and 25 mm 12 h−1 and different forecast lead times are shown in363

Fig. 7. Even for the >1 mm 12 h−1 event, the CSGD method proposed here scores slightly better364

than the rank-analog method. This is a rather common event at most grid points, and we should365

expect that sufficiently close analogs can usually be found. The fact that our method can compete366

with the analog approach in this situation suggests that our parametric approximation does not367

degrade predictive performance even when analog methods can be expected to perform very well.368

Comparing results for higher thresholds, we find that the probabilistic CSGD forecasts noticeably369

improve upon the forecasts by the rank analog method. The event >25 mm 12 h−1 is relatively rare370

even at rather wet grid points, making it difficult to find a sufficient number of suitable analogs. A371

parametric method, on the contrary, can extrapolate relations found for more common situations372

and thus yield superior predictions of rare events.373

b. Reliability diagrams374

To provide some understanding about the causes of the better performance of our parametric375

method compared to the non-parametric analog approach, we study reliability diagrams for the376

same events as above (thresholds 1, 10, and 25 mm 12 h−1) and lead times +12 to +24 h and377

+108 to +120 h. The plots in Figs. 8 and 9 suggest that neither of the two methods are perfectly378

reliable, but both methods yield probability forecasts that sufficiently accurate. By comparing the379

inset frequency histograms, one can see that the performance gain of our CSGD method is mainly380

due to increased resolution. High probabilities for observing heavy precipitation are issued much381

more frequently, but this is done without degrading the reliability compared to the more flexible382

analog approach.383
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c. Case study384

We illustrate the last point by considering a heavy precipitation event that took place over the385

north-western CONUS between 1200 UTC on November 6 and 0000 UTC on November 7 in 2006.386

Fig. 10 shows the analyzed precipitation accumulations for that period, as well as +12 to +24 h387

lead predicted probabilities for exceeding 25 mm 12h−1 of precipitation by the raw ensemble,388

the rank-analog approach and the CSGD regression method. The raw ensemble forecasts for that389

day were extremely good, but since this is not always the case, one can expect that calibrated390

probabilistic forecasts modulate the high forecast probabilities. The analog approach modulates391

them quite strongly, issuing rather moderate probabilities. On the other hand, the CSGD method392

largely retains the strong signal from the raw ensemble, and hence provides decision makers with393

a more unequivocal expectation of heavy precipitation.394

6. Discussion395

We have presented a parametric (“CSGD”) post-processing approach that turns statistics of the396

raw ensemble forecasts into full predictive distributions. Exploratory analysis (see Fig. 2, 3, and397

6) showed that censored, shifted, gamma distributions can approximate both climatological dis-398

tributions of observed precipitation and distributions conditional on the ensemble forecasts rea-399

sonably well. Statistics of the ensemble forecasts were calculated summarizing the mean and400

spread between different ensemble members and different grid points around the location of in-401

terest; ensemble mean precipitable water is used as a further predictor. These statistics drive a402

heteroscedastic regression model, which was demonstrated to be capable of modeling the relation403

between ensemble forecasts and parameters of the predictive CSGDs. Verification results showed404

that the CSGD regression approach yields probabilistic forecast that are sufficiently reliable at all405

lead times, and have better resolution than the forecasts obtained by a state-of-the-art analog ap-406
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proach. This is especially true for forecasts of extreme events, which are of particular interest due407

to their socio-economic impact.408

The benefits of considering forecasts within a larger neighborhood of the location of interest as409

predictors have already been demonstrated by Scheuerer (2014), but both in his and in the present410

paper, the size of this neighborhood was chosen somewhat ad hoc. Ideally, the neighborhood411

would depend on the particular weather situation; more realistically one could at least vary its size412

according to the season and lead time. In the slightly different context of choosing a search region413

for the pattern matching performed as part of the analog method, Hamill and Whitaker (2006)414

found that the optimal search region increases with lead time. We plan experiments along the415

same lines in the framework of our CSGD regression approach.416

In the present study, the training sample size was about 1000 at each grid point. This appears417

to be a lot, but for a weather variable like precipitation, where regression relations are somewhat418

involved and the values of most of the training forecasts and observation are small or moderate,419

it is not clear if one can fit a sufficiently flexible parametric approach with much less training420

data. In practice, however, a large reforecast data set like the one used in this study is not always421

available, and the question arises just how much data is required to warrant stable model fitting422

and results in reliable forecasts. We will address this question in a separate paper where we will423

study the effects of training sample size on predictive performance, propose a strategy to overcome424

possible challenges, and make our CSGD regression method work with a more modest reforecast425

data set. The results presented here make us confident that a well-designed parametric method is426

able to provide reliable and sharp probabilistic forecast guidance based on an affordable amount427

of reforecasts.428
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FIG. 2. Empirical and fitted CDFs (top) and Q-Q plots (bottom) of +12 to +24 h analyzed precipitation

accumulations in West Palm Beach, FL. The black dots in the lower panels are the sorted observations, plotted

against the corresponding theoretical quantiles from the fitted CSGD model. Ideally, they would lie on the

diagonal (solid red line); due to sampling variability, however, any black dot lying within the pointwise 95%

Monte Carlo intervals (solid blue lines) can still be considered consistent with the fitted model.
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FIG. 3. Same as Fig. 2, but for Phoenix, AZ.
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FIG. 4. Illustration of the climatology adjustment (left) and the neighborhood weighting scheme (right).

Forecast grid points are denoted by ’•’, analysis grid points are denoted by ’+’, and for two of these analysis grid

points s1,s2 the neighborhoods are delineated by circles. Forecasts at x are used as predictors for s1,s2, and other

nearby analysis grid points; they are adjusted according to eq. (6) to the respective observation climatologies.

The weight applied to a particular forecast grid point within the neighborhood of s1 is illustrated by the area of

the red dots in the right-hand panel.
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FIG. 6. Conditional deciles (median is highlighted in red) obtained with the augmented Atlanta data set.

Empirical deciles are depicted as crosses. For each conditioning value 1 mm, 2 mm, ..., 25 mm they are obtained

as empirical deciles of the observations corresponding to ensemble-mean statistics within a certain bin (for 5 mm

and 15 mm depicted as vertical dashed lines) around ths value. Deciles derived from the CSGD regression model

are depicted as solid lines.
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FIG. 7. Brier skill scores for different lead times and different event thresholds, separately for each month.

Results for the rank-analog method are shown in the top row, those for the CSGD regression approach are shown

in the bottom row.
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FIG. 8. Reliability diagrams for +12 to +24 h lead time and different event thresholds. The top row shows

results for the rank-analog method, the bottom row shows results for the CSGD regression approach. The inset

histograms depict the frequency with which each category was predicted.
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FIG. 9. As Fig. 8 but for +108 to +120 h lead time.
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(a) 12-h accum. precipitation analysis
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FIG. 10. Analyzed precipitation between 1200 UTC, Nov 6, 2006 and 0000 UTC Nov 7, 2006 (a) and

corresponding +12 to +24 h lead probability forecasts for exceeding 25 mm 12 h−1 of precipitation by the raw

ensemble (b), the rank-analog method (c) and the CSGD regression approach (d).
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